Some tiles associated with the 6th unit cubic Pisot number

Symmetric Tile

One of the dissection polynomials for the 6th unit cubic Pisot is 2c+c3=1, so there is the possibility of a order 3 symmetric tile, with the smaller element at the centre, and the other two elements symmetrically flanking it. On investigation this tile is found to exist.

order 3 symmetric tile

As this tile has c2 symmetry it is 8- (23-)fold degenerate - each of the three elements can be placed in one of two orientations. For the same reason the grouped element technique can be used to generate 2 demi-symmetric tiles.

There are obviously many additional dissections with more elements, include some symmetric dissections. An order 5 version (2c+2c4+c6) is formed by dissecting the central element. This gives rise to 10 further demi-symmetric tiles.

order 3 symmetric tile

Symmetric order 7 versions are formed by dissection of the outer elements of the order 3 version (4c2+c3+2c4) or of the innermost element of the order 5 version (2c+2c3+2c7+c9). The former is the source of an additional 48 demi-symmetric tiles, and the latter of an additional 52 demi-symmetric tiles.

1st order 7 symmetric tile2nd order 7 symmetric tile

Symmetric order 9 versions are formed by dissection of all elements of the order 3 version (4c2+4c4+c6), by the dissection of the two intermediate elements of the order 5 version (2c+4c5+c6+2c7) or by dissection of the innermost element of the order 7 version (2c+2c4+2c7+2c9+c12). These would give rise to hundreds of order 9 demisymmetric tiles.

Tiling

There is a great (uncountably infinite) number of tilings of the plane by the symmetric tile, with one or more copies, of various sizes, of the tile forming the unit cell.

If the IFS is { T1:p → ap - 1; T2:p → ap + 1; T3:p → a3p } then the obvious candidate values for the tiling vectors are 4 and 4a. However this leads to a tiling with 6 elements in the unit cell (signature 033344 or 03342). Shuffling copies to find a tiling with a single copy in the unit cell (signature 0) I found that the tiling vectors were 4(1 + a3 + a6 + a9 + …) and 4a(1 + a3 + a6 + a9 + …). These geometric series sum to 4/(1-a3) and 4a/(1-a3). These numbers can be rewritten as 3 - a - a2 and a(3 - a - a2).

There are several ways of notating tilings. For example, as above the signature (the relative sizes of the copies in the cell), in either longhand (e.g. 033) or shorthand (e.g 032) form, can be used, with the offsets given in brackets in the cases where there are multiple tilings for a unit cell. But the signature is not always unique. For example there are two tilings with signature 00111. In this case this can be resolved by dividing the tiling into columns, and ordering the copies in column order, giving 00111 and 01011, repeating for each row. A middle dot can be used to delimit groups of copies within a unit cell, e.g. 0·353 representing a dissection of the smaller element of the 0·2 tiling.

An alternative notation is to use the tiling vectors. But this breaks down when additional tilings are created by dissecting one or more copies in the unit cell, as the tiling vectors are unchanged by such. Even the combination of signature and tiling vectors is not unique, as there are different dissections of the symmetric tile with the same signature. It may be that nothing less than listing the cell transforms (the affine transforms mapping a largest copy in the unit cell to the other copies in the unit cell) and tiling vectors is sufficient, but the vector element of cell transforms can be quite long winded, so this is not exactly convenient. For the time being I will use signatures, and note when they are not unique.

tiling (1 copy in unit cell)

There are six ways of creating additional tilings.

Two row tilings exist when the rows are pulled apart by t2 (02), -t3 (022), -t4 (0344), t6 (05464) and t5+t6 (0445364); possibly there are more with large numbers of small copies. Three and upwards row tilings exist for sums of these values (and t1).

Two column tilings exist when the columns are pulled apart by -t2 (01), -t3 (03), t4 (033), t5 (0455), -t7 (06474) and -(t6+t7) (0546374); possibly there are more with large numbers of small copies. Three and upwards row tilings exist for sums of these values (and t0).

It can be seen that there are parallels between the two row and two column tilings, which are completed by adding 00 as a two row tiling. (00 is the same tiling as 0, except that pairs of unit cells are arbitarily combined.) For each two row tiling there is a corresponding two column tiling, with the tilings having the same number of copies in the unit cell, and the copies (except for the first) having the same relative sizes and positions, with all the numbers increased by one, and the signs on the vectors reversed. Consequently analogous complications occur for three and greater numbers of columns.

In both cases there is one case where the unit cell belongs to two different tilings, the second being created from the first by sliding successive columns (rows) upwards (rightwards). However the cases are not the corresponding tilings, being the two row tiling 0344 and the two column tiling 03.

signature: 01

tiling vectors: t0 - t2 and t1

cell transforms:

  • C1:pp
  • C2:p→ap + (t0 - t2) / 2
tiling (signature 01)

signature: 02

tiling vectors: t0 and t1 + t2

cell transforms:

  • C1:pp
  • C2:p→ap + (t1 + t2) / 2
tiling (signature 02)

signature: 03(0)

tiling vectors: t0 - t3 (= a0 = 4) and t1

cell transforms:

  • C1:pp
  • C2:p→a3p + (t0 - t3) / 2
tiling (signature 03(0))

signature: 03(a0/2)

tiling vectors: t0 - t3 (= a0 = 4) and t1 + t0 + t2

cell transforms:

  • C1:pp
  • C2:p→a3p + (t0 - t3) / 2
tiling (signature 03(a0/2))

signature: 022

tiling vectors: t0 and t1 - t3

cell transforms:

  • C1:pp
  • C2:p→ap + (t1 - t3) / 2 + (t2 + t3) / 2
  • C3:p→ap + (t1 - t3) / 2 - (t2 + t3) / 2
tiling (signature 022)

signature: 033

tiling vectors: t0 + t4 and t1

cell transforms:

  • C1:pp
  • C2:p→a3p + (t0 + t4) / 2 + (t3 + t4) / 2
  • C3:p→a3p + (t0 + t4) / 2 - (t3 + t4) / 2
tiling (signature 033)

signature: 0344(0)

tiling vectors: t0 and t1 - t4

cell transforms:

  • C1:pp
  • C2:p→a3p + (t1 - t4) / 2
  • C3:p→a4p + (t1 - t4) / 2 + (t0 + t2) / 2
  • C4:p→a4p + (t1 - t4) / 2 - (t0 + t2) / 2
tiling (signature 0344)

signature: 0344(a0/2)

tiling vectors: t0 + (t1 - t4) / 2 and t1 - t4

cell transforms:

  • C1:pp
  • C2:p→a3p + (t1 - t4) / 2
  • C3:p→a4p + (t1 - t4) / 2 + (t0 + t2) / 2
  • C4:p→a4p + (t1 - t4) / 2 - (t0 + t2) / 2
tiling (signature 0344)

signature: 0455

tiling vectors: t0 + t5 and t1

cell transforms:

  • C1:pp
  • C2:p→a4p + (t0 + t5) / 2
  • C3:p→a5p + (t0 + t5) / 2 - (t1 + t3) / 2
  • C4:p→a5p + (t0 + t5) / 2 + (t1 + t3) / 2
tiling (signature 0455)

signature: 05464

tiling vectors: t0 and t1 + t6

cell transforms:

  • C1:pp
  • C2:p→a5p + (t1 + t6) / 2 + (t0 + t2) / 2
  • C3:p→a5p + (t1 + t6) / 2 - (t0 + t2) / 2
  • C4:p→a5p + (t1 + t6) / 2 + (t0 + t2) / 2 + (t2 + t4)
  • C5:p→a5p + (t1 + t6) / 2 - (t0 + t2) / 2 - (t2 + t4)
  • C6:p→a6p + (t1 + t6) / 2 + (t0 + t2) / 2 + (t2 + t4) / 2
  • C7:p→a6p + (t1 + t6) / 2 + (t0 + t2) / 2 - (t2 + t4) / 2
  • C8:p→a6p + (t1 + t6) / 2 - (t0 + t2) / 2 + (t2 + t4) / 2
  • C9:p→a6p + (t1 + t6) / 2 - (t0 + t2) / 2 - (t2 + t4) / 2
tiling (signature 055556666)

signature: 06474

tiling vectors: t0 - t7 and t1

cell transforms:

  • C1:pp
  • C2:p→a6p + (t0 - t7) / 2 + (t4 + t6) / 2
  • C3:p→a6p + (t0 - t7) / 2 - (t4 + t6) / 2
  • C4:p→a6p + (t0 - t7) / 2 + (t4 + t3) / 2
  • C5:p→a6p + (t0 - t7) / 2 - (t4 + t3) / 2
  • C6:p→a7p + (t0 - t7) / 2 + (t4 - t5) / 2
  • C7:p→a7p + (t0 - t7) / 2 - (t4 - t5) / 2
  • C8:p→a7p + (t0 - t7) / 2 + (t4 - t5) / 2 + (t3 + t5)
  • C9:p→a7p + (t0 - t7) / 2 - (t4 - t5) / 2 - (t3 + t5)
tiling (signature 066667777)

signature: 0445364

tiling vectors: t0 and t1 + t5 + t6

cell transforms:

  • C1:pp
  • C2:p→a4p + (t0 - t5) / 2 + t1 + t3
  • C3:p→a4p + (t0 - t5) / 2 + t1 + t3 - t0 - t2
  • C4:p→a4p + (t0 - t5) / 2 + t1 + t3 + t2 + t4
  • C5:p→a4p + (t0 - t5) / 2 + t1 + t3 - t0 - t2 + t2 + t4
  • C6:p→a5p + (t1 + t6) / 2 + t5 - (t0 + t2) / 2
  • C7:p→a5p + (t1 + t6) / 2 + t5 + (t0 + t2) / 2
  • C8:p→a5p + (t1 + t6) / 2 + t5 + (t0 + t2) / 2 + t2 + t4
  • C9:p→a6p + (t1 + t6) / 2 + t5 + (t0 + t2) / 2 + (t2 + t4) / 2
  • C10:p→a6p + (t1 + t6) / 2 + t5 + (t0 + t2) / 2 - (t2 + t4) / 2
  • C11:p→a6p + (t1 + t6) / 2 + t5 - (t0 + t2) / 2 + (t2 + t4) / 2
  • C12:p→a6p + (t1 + t6) / 2 + t5 - (t0 + t2) / 2 - (t2 + t4) / 2
tiling (signature 044445556666)

signature: 0546374

tiling vectors: t0 - t6 - t7 and t1

cell transforms:

  • C1:pp
  • C2:p→a5p + (t0 - t6) / 2 + (t4 - t5) / 2
  • C3:p→a5p + (t0 - t6) / 2 - (t4 - t5) / 2
  • C4:p→a5p + (t0 - t6) / 2 + (t4 - t5) / 2 + (t3 + t5)
  • C5:p→a5p + (t0 - t6) / 2 - (t4 - t5) / 2 - (t3 + t5)
  • C6:p→a6p + (t0 - t6) / 2 - t6 - t7
  • C7:p→a6p + (t0 - t6) / 2 - t6 - t7 + (t3 + t5)
  • C8:p→a6p + (t0 - t6) / 2 - t6 - t7 - (t3 + t5) - (t4 + t5 + t7 + t8) / 2
  • C9:p→a7p + (t0 + t5) / 2 - (t3 + t5)
  • C10:p→a7p + (t0 + t5) / 2
  • C11:p→a7p + (t0 + t5) / 2 + (t3 + t5) - t6 - t7
  • C12:p→a7p + (t0 + t5) / 2 + 2(t3 + t5) - t6 - t7
tiling (signature 055556667777)

Given two row (column) tilings, three row (column) tilings are generally easier to generate. One can take a tiling, and add the last rows (columns) of the same or another tiling. The modifications to tiling vectors and to the cell transforms for the last rows (columns) are relatively simple to identify.

tiling (signature 002)tiling (signature 0022)tiling (signature 00344)tiling (signature 0055556666)tiling (signature 0044445556666)tiling (signature 0222)tiling (signature 02344)tiling (signature 0255556666)tiling (signature 0244445556666) tiling (signature 02222) tiling (signature 022344) tiling (signature 02255556666) tiling (signature 02244445556666) tiling (signature 0344344) tiling (signature 034455556666) tiling (signature 034444445556666) tiling (signature 05555666655556666) tiling (signature 05555666644445556666) tiling (signature 04444555666644445556666)

The three column tilings are 001, 003, 0033, 00455, 006474, 00546374, 011, 013, 0133, 01455, 016474, 01546374, 0333, 03455, 036474, 03546374, 034, 033455, 0336474, 033546374, 0445455, 04556474, 04566374, 064746474, 06474546374 and 0546374546374.

tiling (signature 001)tiling (signature 003)tiling (signature 0033)tiling (signature 00455)tiling (signature 0066667777)tiling (signature 0055556667777)tiling (signature 011)tiling (signature 013)tiling (signature 0133)tiling (signature 01455)tiling (signature 0166667777)tiling (signature 0155556667777), tiling (signature 0333) tiling (signature 0366667777) tiling (signature 0355556667777) tiling (signature 03333) tiling (signature 033455)tiling (signature 03366667777)tiling (signature 03355556667777) tiling (signature 0455455)tiling (signature 045566667777)tiling (signature 045555556667777) tiling (signature 06666777766667777)tiling (signature 06666777755556667777) tiling (signature 05555666777755556667777)

In most cases simultaneously pulling both the rows and columns by the vectors identified above generates new tilings, composed of the union of the elements of the two row and two column tilings, with any gaps filled in by additional copies of the tile. In three cases there is an overlap (in which case to generate a tiling one has to dissect an copy and remove one of the resulting copies), and in two pairs of cases, once the gap has been filled in the same tiling results. The signatures of the resulting tiles are shown in the table immediately below.

01 03 033 0455 06474 0546374
02 012 023·2 02455·44
022 0122·2 0223 02233·3 022455·5 026474·677 022546374·55677
0344 01344·4 03344·3 033344 0344455·4 03446474·66 0344546374·55677
05464 015464·566 035464·44 0335464·6 04555464·5 054646474·6 05464546374·6
0445364 01445364·44566 03445364·5 033445364·46 0455445364·5 04453646474·67 0445364546374·567

tiling (signature 012) tiling (signature 01222) tiling (signature 0133444) tiling (signature 0133444) tiling (signature 0155555666666) tiling (signature 01444444555556666) tiling (signature 0223) tiling (signature 033344) tiling (signature 033344) tiling (signature 033344) tiling (signature 035555556666) tiling (signature 035555556666) tiling (signature 03444455556666) tiling (signature 03444455556666) tiling (signature 0244455) tiling (signature 0224555) tiling (signature 03444455) tiling (signature 03444455) tiling (signature 0455555556666) tiling (signature 0455444455556666) tiling (signature 02266667777) tiling (signature 034466667777) tiling (signature 034466667777) tiling (signature 05555666666667777) tiling (signature 044445556666666667777) tiling (signature 022555555666677777) tiling (signature 0344555566667777) tiling (signature 0344555566667777) tiling (signature 055555555666666667777)

Once "2-row × 2-column" tilings have been produced they can be readily generalised to produce "m-row × n-column" tilings.

© 2015 Stewart R. Hinsley